1,254 research outputs found

    The plasma dynamics of hypersonic spacecraft: Applications of laboratory simulations and active in situ experiments

    Get PDF
    Attempts to gain an understanding of spacecraft plasma dynamics via experimental investigation of the interaction between artificially synthesized, collisionless, flowing plasmas and laboratory test bodies date back to the early 1960's. In the past 25 years, a number of researchers have succeeded in simulating certain limited aspects of the complex spacecraft-space plasma interaction reasonably well. Theoretical treatments have also provided limited models of the phenomena. Several active experiments were recently conducted from the space shuttle that specifically attempted to observe the Orbiter-ionospheric interaction. These experiments have contributed greatly to an appreciation for the complexity of spacecraft-space plasma interaction but, so far, have answered few questions. Therefore, even though the plasma dynamics of hypersonic spacecraft is fundamental to space technology, it remains largely an open issue. A brief overview is provided of the primary results from previous ground-based experimental investigations and the preliminary results of investigations conducted on the STS-3 and Spacelab 2 missions. In addition, several, as yet unexplained, aspects of the spacecraft-space plasma interaction are suggested for future research

    The interaction of small and large spacecraft with their environment

    Get PDF
    The most significant results from small scientific satellites and from the space shuttle mission STS-3 regarding body-plasma interactions are presented and discussed. The causes for the above information being meager and fragmentary are given. The research avenues to be followed in the future in order to correct this situation are mentioned, including practical ways to achieve this goal

    Entrainment of noise-induced and limit cycle oscillators under weak noise

    Full text link
    Theoretical models that describe oscillations in biological systems are often either a limit cycle oscillator, where the deterministic nonlinear dynamics gives sustained periodic oscillations, or a noise-induced oscillator, where a fixed point is linearly stable with complex eigenvalues and addition of noise gives oscillations around the fixed point with fluctuating amplitude. We investigate how each class of model behaves under the external periodic forcing, taking the well-studied van der Pol equation as an example. We find that, when the forcing is additive, the noise-induced oscillator can show only one-to-one entrainment to the external frequency, in contrast to the limit cycle oscillator which is known to entrain to any ratio. When the external forcing is multiplicative, on the other hand, the noise-induced oscillator can show entrainment to a few ratios other than one-to-one, while the limit cycle oscillator shows entrain to any ratio. The noise blurs the entrainment in general, but clear entrainment regions for limit cycles can be identified as long as the noise is not too strong.Comment: 27 pages in preprint style, 12 figues, 2 tabl

    Centre-of-mass and internal symmetries in classical relativistic systems

    Full text link
    The internal symmetry of composite relativistic systems is discussed. It is demonstrated that Lorentz-Poincar\'e symmetry implies the existence of internal moments associated with the Lorentz boost, which are Laplace-Runge-Lenz (LRL) vectors. The LRL symmetry is thus found to be the internal symmetry universally associated with the global Lorentz transformations, in much the same way as internal spatial rotations are associated with global spatial rotations. Two applications are included, for an interacting 2-body system and for an interaction-free many-body system of particles. The issue of localizability of the relativistic CM coordinate is also discussed

    Compaction dynamics in ductile granular media

    Full text link
    Ductile compaction is common in many natural systems, but the temporal evolution of such systems is rarely studied. We observe surprising oscillations in the weight measured at the bottom of a self-compacting ensemble of ductile grains. The oscillations develop during the first ten hours of the experiment, and usually persist through the length of an experiment (one week). The weight oscillations are connected to the grain--wall contacts, and are directly correlated with the observed strain evolution and the dynamics of grain--wall contacts during the compaction. Here, we present the experimental results and characteristic time constants of the system, and discuss possible reasons for the measured weight oscillations.Comment: 11 pages, 14 figure

    Subconjunctival delivery of p75NTR antagonists reduces the inflammatory, vascular, and neurodegenerative pathologies of diabetic retinopathy

    Get PDF
    The p75NTR is a novel therapeutic target validated in a streptozotocin mouse model of diabetic retinopathy. Intravitreal (IVT) injection of small molecule p75NTR antagonist THX-B was therapeutic and resolved the inflammatory, vascular, and neurodegenerative phases of the retinal pathology. To simplify clinical translation, we sought a superior drug delivery method that circumvents risks associated with IVT injections. METHODS. We compared the pharmacokinetics of a single 40 lg subconjunctival (SCJ) depot to the reported effective 5 lg IVT injections of THX-B. We quantified therapeutic efficacy, with endpoints of inflammation, edema, and neuronal death. RESULTS. The subconjunctival depot affords retinal exposure equal to IVT injection, without resulting in detectable drug in circulation. At week 2 of diabetic retinopathy, the SCJ depot provided therapeutic efficacy similar to IVT injections, with reduced inflammation, reduced edema, reduced neuronal death, and a long-lasting protection of the retinal structure. CONCLUSIONS. Subconjunctival injections are a safe and effective route for retinal delivery of p75NTR antagonists. The subconjunctival route offers an advantageous, less-invasive, more compliant, and nonsystemic method to deliver p75NTR antagonists for the treatment of retinal diseases.Fil: Galan, Alba. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Barcelona, Pablo Federico. Mc Gill University. Lady Davis Research Intitute; Canadá. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Nedev, Hinyu. Mc Gill University. Lady Davis Research Intitute; CanadáFil: Sarunic, Marinko V.. University Fraser Simon; CanadáFil: Jian, Yifan. University Fraser Simon; CanadáFil: Saragovi, H. Uri. Mc Gill University. Lady Davis Research Intitute; Canad
    corecore